讨论随机问题。
随机变量描述的是一个随机实验可能出现的结果以及每种可能结果的可能性,也就是概率。先看一个例子。
例[老千掷硬币]:假设某老千每次投掷硬币的结果有1/3可能性出正面,2/3的可能性出反面。那么掷一次硬币就是一个随机实验,掷硬币的结果就是一个随机变量,我们这里记作大写的X。如果把正面记作1,反面记作0,那么这个随机变量X可以通过一个函数P(x)来描述:函数的变量(小写的)x的取值范围是集合{0,1},这个集合此后记作S;函数在0和1的取值分别为:P(1)=1/3,P(0)=2/3。
从这个例子可以看出,一个随机变量X无非是通过在某个集合S上定义的一个函数P(x)来描述的,而这个函数不能取负值,而且必须在对其变量x求和的时候结果为1(在老千掷硬币的例子中即:P(0)+P(1)=1)。这个函数通常被称为随机变量X的概率分布。
当然,同样是掷硬币,可以定义出很多不同的随机变量(即不同的概率分布函数P(x))来。普通人掷硬币对应的随机变量基本就是P(0)=P(1)=1/2。赌神掷硬币对应的随机变量可能是P(0)=1,P(1)=0。
生活中的随机变量比比皆是。比如,在掷骰子的时候,骰子掷出的结果这个随机变量对应于一个定义在S={1,2,...,6}上的概率分布函数P(x),通常认为P(1)=P(2)=...=P(6)=1/6。再比如明天会不会下雨(天气预报不准的啦),会有几个人给俺这篇吐血之作点赞或转发(不晓得多少人更喜欢韩剧的啦)这些不确定的事情里都可以定义出随机变量来。记得不知道哪一位伟人曾经说过,“随机变量是到处都有的。对于我们的脑袋,不是缺少随机变量,而是缺少发现。”
↑返回顶部↑